Copied to
clipboard

G = C527D4order 200 = 23·52

2nd semidirect product of C52 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial

Aliases: C527D4, C1023C2, C10.16D10, (C2×C10)⋊2D5, C22⋊(C5⋊D5), C53(C5⋊D4), C526C43C2, (C5×C10).15C22, (C2×C5⋊D5)⋊3C2, C2.5(C2×C5⋊D5), SmallGroup(200,36)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C527D4
C1C5C52C5×C10C2×C5⋊D5 — C527D4
C52C5×C10 — C527D4
C1C2C22

Generators and relations for C527D4
 G = < a,b,c,d | a5=b5=c4=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 320 in 64 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C4, C22, C22, C5, D4, D5, C10, C10, Dic5, D10, C2×C10, C52, C5⋊D4, C5⋊D5, C5×C10, C5×C10, C526C4, C2×C5⋊D5, C102, C527D4
Quotients: C1, C2, C22, D4, D5, D10, C5⋊D4, C5⋊D5, C2×C5⋊D5, C527D4

Smallest permutation representation of C527D4
On 100 points
Generators in S100
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)
(1 44 38 33 28)(2 45 39 34 29)(3 41 40 35 30)(4 42 36 31 26)(5 43 37 32 27)(6 100 22 16 11)(7 96 23 17 12)(8 97 24 18 13)(9 98 25 19 14)(10 99 21 20 15)(46 67 61 56 51)(47 68 62 57 52)(48 69 63 58 53)(49 70 64 59 54)(50 66 65 60 55)(71 92 86 81 76)(72 93 87 82 77)(73 94 88 83 78)(74 95 89 84 79)(75 91 90 85 80)
(1 73 48 98)(2 72 49 97)(3 71 50 96)(4 75 46 100)(5 74 47 99)(6 42 80 67)(7 41 76 66)(8 45 77 70)(9 44 78 69)(10 43 79 68)(11 36 85 61)(12 40 81 65)(13 39 82 64)(14 38 83 63)(15 37 84 62)(16 31 90 56)(17 35 86 60)(18 34 87 59)(19 33 88 58)(20 32 89 57)(21 27 95 52)(22 26 91 51)(23 30 92 55)(24 29 93 54)(25 28 94 53)
(2 5)(3 4)(6 92)(7 91)(8 95)(9 94)(10 93)(11 86)(12 90)(13 89)(14 88)(15 87)(16 81)(17 85)(18 84)(19 83)(20 82)(21 77)(22 76)(23 80)(24 79)(25 78)(26 41)(27 45)(28 44)(29 43)(30 42)(31 40)(32 39)(33 38)(34 37)(35 36)(46 50)(47 49)(51 66)(52 70)(53 69)(54 68)(55 67)(56 65)(57 64)(58 63)(59 62)(60 61)(71 100)(72 99)(73 98)(74 97)(75 96)

G:=sub<Sym(100)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,22,16,11)(7,96,23,17,12)(8,97,24,18,13)(9,98,25,19,14)(10,99,21,20,15)(46,67,61,56,51)(47,68,62,57,52)(48,69,63,58,53)(49,70,64,59,54)(50,66,65,60,55)(71,92,86,81,76)(72,93,87,82,77)(73,94,88,83,78)(74,95,89,84,79)(75,91,90,85,80), (1,73,48,98)(2,72,49,97)(3,71,50,96)(4,75,46,100)(5,74,47,99)(6,42,80,67)(7,41,76,66)(8,45,77,70)(9,44,78,69)(10,43,79,68)(11,36,85,61)(12,40,81,65)(13,39,82,64)(14,38,83,63)(15,37,84,62)(16,31,90,56)(17,35,86,60)(18,34,87,59)(19,33,88,58)(20,32,89,57)(21,27,95,52)(22,26,91,51)(23,30,92,55)(24,29,93,54)(25,28,94,53), (2,5)(3,4)(6,92)(7,91)(8,95)(9,94)(10,93)(11,86)(12,90)(13,89)(14,88)(15,87)(16,81)(17,85)(18,84)(19,83)(20,82)(21,77)(22,76)(23,80)(24,79)(25,78)(26,41)(27,45)(28,44)(29,43)(30,42)(31,40)(32,39)(33,38)(34,37)(35,36)(46,50)(47,49)(51,66)(52,70)(53,69)(54,68)(55,67)(56,65)(57,64)(58,63)(59,62)(60,61)(71,100)(72,99)(73,98)(74,97)(75,96)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100), (1,44,38,33,28)(2,45,39,34,29)(3,41,40,35,30)(4,42,36,31,26)(5,43,37,32,27)(6,100,22,16,11)(7,96,23,17,12)(8,97,24,18,13)(9,98,25,19,14)(10,99,21,20,15)(46,67,61,56,51)(47,68,62,57,52)(48,69,63,58,53)(49,70,64,59,54)(50,66,65,60,55)(71,92,86,81,76)(72,93,87,82,77)(73,94,88,83,78)(74,95,89,84,79)(75,91,90,85,80), (1,73,48,98)(2,72,49,97)(3,71,50,96)(4,75,46,100)(5,74,47,99)(6,42,80,67)(7,41,76,66)(8,45,77,70)(9,44,78,69)(10,43,79,68)(11,36,85,61)(12,40,81,65)(13,39,82,64)(14,38,83,63)(15,37,84,62)(16,31,90,56)(17,35,86,60)(18,34,87,59)(19,33,88,58)(20,32,89,57)(21,27,95,52)(22,26,91,51)(23,30,92,55)(24,29,93,54)(25,28,94,53), (2,5)(3,4)(6,92)(7,91)(8,95)(9,94)(10,93)(11,86)(12,90)(13,89)(14,88)(15,87)(16,81)(17,85)(18,84)(19,83)(20,82)(21,77)(22,76)(23,80)(24,79)(25,78)(26,41)(27,45)(28,44)(29,43)(30,42)(31,40)(32,39)(33,38)(34,37)(35,36)(46,50)(47,49)(51,66)(52,70)(53,69)(54,68)(55,67)(56,65)(57,64)(58,63)(59,62)(60,61)(71,100)(72,99)(73,98)(74,97)(75,96) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100)], [(1,44,38,33,28),(2,45,39,34,29),(3,41,40,35,30),(4,42,36,31,26),(5,43,37,32,27),(6,100,22,16,11),(7,96,23,17,12),(8,97,24,18,13),(9,98,25,19,14),(10,99,21,20,15),(46,67,61,56,51),(47,68,62,57,52),(48,69,63,58,53),(49,70,64,59,54),(50,66,65,60,55),(71,92,86,81,76),(72,93,87,82,77),(73,94,88,83,78),(74,95,89,84,79),(75,91,90,85,80)], [(1,73,48,98),(2,72,49,97),(3,71,50,96),(4,75,46,100),(5,74,47,99),(6,42,80,67),(7,41,76,66),(8,45,77,70),(9,44,78,69),(10,43,79,68),(11,36,85,61),(12,40,81,65),(13,39,82,64),(14,38,83,63),(15,37,84,62),(16,31,90,56),(17,35,86,60),(18,34,87,59),(19,33,88,58),(20,32,89,57),(21,27,95,52),(22,26,91,51),(23,30,92,55),(24,29,93,54),(25,28,94,53)], [(2,5),(3,4),(6,92),(7,91),(8,95),(9,94),(10,93),(11,86),(12,90),(13,89),(14,88),(15,87),(16,81),(17,85),(18,84),(19,83),(20,82),(21,77),(22,76),(23,80),(24,79),(25,78),(26,41),(27,45),(28,44),(29,43),(30,42),(31,40),(32,39),(33,38),(34,37),(35,36),(46,50),(47,49),(51,66),(52,70),(53,69),(54,68),(55,67),(56,65),(57,64),(58,63),(59,62),(60,61),(71,100),(72,99),(73,98),(74,97),(75,96)]])

C527D4 is a maximal subgroup of   Dic5.D10  D5×C5⋊D4  C20.50D10  D4×C5⋊D5  C20.D10
C527D4 is a maximal quotient of   C102.22C22  C10.11D20  C527D8  C528SD16  C5210SD16  C527Q16  C10211C4

53 conjugacy classes

class 1 2A2B2C 4 5A···5L10A···10AJ
order122245···510···10
size11250502···22···2

53 irreducible representations

dim11112222
type+++++++
imageC1C2C2C2D4D5D10C5⋊D4
kernelC527D4C526C4C2×C5⋊D5C102C52C2×C10C10C5
# reps11111121224

Matrix representation of C527D4 in GL4(𝔽41) generated by

403400
7700
0001
004034
,
0100
403400
0001
004034
,
174000
32400
00383
00243
,
1000
344000
0077
004034
G:=sub<GL(4,GF(41))| [40,7,0,0,34,7,0,0,0,0,0,40,0,0,1,34],[0,40,0,0,1,34,0,0,0,0,0,40,0,0,1,34],[17,3,0,0,40,24,0,0,0,0,38,24,0,0,3,3],[1,34,0,0,0,40,0,0,0,0,7,40,0,0,7,34] >;

C527D4 in GAP, Magma, Sage, TeX

C_5^2\rtimes_7D_4
% in TeX

G:=Group("C5^2:7D4");
// GroupNames label

G:=SmallGroup(200,36);
// by ID

G=gap.SmallGroup(200,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,61,643,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^4=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽